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Abstract

Drug development is a rigorous process essential for improving patient
outcomes. However, this complex endeavour requires significant investment
and time. The integration of Machine Learning (ML) techniques in drug
discovery can revolutionize the field by efficiently processing large amounts
of data and accelerating the identification and development of potential drug
candidates. This review highlights ML’s impact across drug development
stages, from design to clinical trials (CTs).

Recently, the availability of high-quality databases and the surge in data
digitalization has promoted the development of several ML algorithms, which
have proved to be effective in classifying outcomes based on multivariate
relationships. Particularly, Deep Learning (DL) architectures such as
feedforward networks, Recurrent Neural Networks (RNNs), Convolutional
Neural Networks (CNNs), and Long Short-Term Memory (LSTM) neural
networks, represent a subset of ML which has been gaining popularity because
of its ability to emulate the human brain and handle more complex tasks, thus
representing a paradigm shift in data analysis and prediction.

ML plays a vital role in virtual screening, de-novo drug design and drug
repurposing. Virtual screening methods can rapidly screen large chemical
libraries and identify promising candidates for further investigation. De-novo
drug design involves the use of ML-based generative models to produce new
chemical structures with desired properties. Drug repurposing aims to identify
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new therapeutic uses for existing drugs. Additionally,
ML can improve the efficiency of CTs by addressing
challenges related to patient enrolment, study design,
and phase transition.

The integration of ML with high-quality datasets can
significantly improve drug development process,
thereby increasing efficiency and success rates.
However, itis important to address issues related to data
quality, preprocessing bias, molecular representation,
and interpretation of results. Harnessing the power of Al
can accelerate drug development, ultimately benefiting
patients and the healthcare industry as a whole.

1. Introduction

Drug development is a complex and rigorous
process that involves the discovery, design, testing and
approval of new drugs for the treatment, prevention
or management of diseases and health conditions. It
is an important aspect of healthcare that is critical to
improve patient outcomes and address unmet medical
needs.

Due to its highest standards, drug development process
is long and expensive, often lasting several years and
requiring significant investment. Up to an amount close
to 2.5 billion dollars and five to ten years may be required
to pass from bench-side to market [1-4]. Furthermore,
despite rigorous testing, not all drug candidates make it
through all stages of development due to limited or no
therapeutic efficacy in humans or unacceptable toxicity
leading to treatment discontinuation. It has been
estimated that only 59% of drugs evaluated in phase 3
trials ultimately secure final approval from the Food and
Drug Administration (FDA), and astonishingly, when
considering the phase 1 trials, a mere 13.8% of drugs
entering this phase ultimately attain final regulatory
approval [5].

In the realm of drug discovery, the integration of
Artificial Intelligence (AI) holds immense potential
in terms of improving the efficiency and success rate
of drug development process. However, its success
heavily relies on the availability of a high-quality
databases. In recent years, the pharmaceutical sector,
as many others, has witnessed a remarkable surge in
data digitalization, revolutionizing the way information
is handled. This exponential growth of digitized
data presented a formidable challenge of effectively

acquiring, scrutinizing, and analysing the vast
knowledge available. The development of advanced
IT infrastructure has facilitated the organization, and
accessibility of these data through user-friendly and
widely accessible online databases.

Given this background, AI has emerged as a powerful
tool for efficiently managing vast amounts of data
through enhanced automation. This capability had
a profound impact on the field of drug discovery,
resulting in a paradigm shift in the applications of Al
techniques. Machine Learning (ML), in particular, has
been extensively utilized to analyse clinical data, learn
from a large number of examples, and make predictions
about the behaviour of unexplored datasets. These
advancements have revolutionized the landscape of
drug discovery, enabling us to gain valuable insights
and make informed decisions based on the power
trained models [6].

In this Review, we will try to give a brief overview of
how ML may have an impact on different phases of
drug development, from drug design to Clinical Trials
(CTs). Particularly, we will commence by delineating
the requisite technical specifications and operational
procedures inherent to ML. Subsequently, our focus
will pivot towards a comprehensive exploration of
Drug Discovery, starting with its foundation: chemical
libraries; this segment will elucidate the storage of
potential drug candidates and the pivotal role that
Al plays in either facilitating compound screening or
engendering novel ones. Following this, we will explore
the realm of Drug Repurposing, an alternative approach
to conventional new drug development, which can serve
as a valuable strategy to address unmet medical needs.
Lastly, we will conclude by delving into the latest stages
of drug development, where we will discuss the various
ways in which AT exerts its influence across different
phases, steps, and prospects of CTs.

2. Machine Learning: technical bases

While AIfindsextensiveapplication within thebiomedical
sciences, it predominantly retains its character as a technical
discipline grounded in fundamental informatics. In
order to furnish readers with a navigational aid within
this domain, we provided concise definitions of the most
technically nuanced terms employed in this review in
Table 1.
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TABLE 1 - Brief definition of technical Al terms. 1/2

Terminology

Activation Function

Artificial Intelligence (Al)

American Standard Code
for Information Interchange (ASCII)

Autoencoder Neural Networks (AENs)

Backpropagation

Canonization algorithm

Convolutional Neural Network (CNN)

Deep Learning (DL)

Deep Neural Network

Feedforward Networks

Generative Models (GMs)

Gradient Descent

Hidden layer

Kernel Density Estimation (KDE)

Description

A function used in neural networks that adds non-linearity to the
network, enabling it to learn from more complex data.

The science of creating intelligent machines capable of performing
tasks that typically require human intelligence.

Character encoding standard for electronic communication,
which is commonly used to represent text in computers and
other devices.

Neural networks used for data compression and feature learning,
consisting of an encoder and a decoder.

A method used in artificial neural networks to calculate the error
contribution of each neuron after a batch of data is processed, going
hack from the output layer to the hidden and input layers.

An algorithm used to transform data or structures into a standardi-
zed or canonical form, making them more easily comparable or
searchable.

A type of deep learning model primarily used for analyzing visual
imagery. It uses convolutional layers to filter inputs for useful
information.

A subset of ML that uses artificial neural networks with multiple
layers (deep structures) to model and understand complex patterns.

Neural networks with multiple hidden layers, allowing them to model
complex relationships in data.

A type of neural network where the information flow is unidirectional,
moving forward from the input nodes to the output nodes without
cycles or loops.

ML or DL models used to generate synthetic data, upon being trained
on real data and have learned how to optimally approximate them.

An optimization algorithm used to find the values of parameters that
minimize a given function by iteratively moving in the direction of
steepest descent.

The neural network layers that usually stay in between of the input
and output layers.

Non-parametric method used in statistics to estimate the probability
density function of a random variable, through using a non- negative,
kernel function, to smooth the data points and generate a continuous
and smooth estimate of the underlying distribution.
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TABLE 1 - Brief definition of technical Al terms. 2/2

Terminology

Long Short-Term Memory (LSTM)
Neural Networks

Description

A special kind of RNN capable of learning long-term dependencies,
widely used in tasks involving sequential data and timeseries.

Loss function A function to measure how well the network is performing with
respect to its given training sample and the expected output. It
quantifies the disparity between the predicted and actual outcomes,
which is what the model seeks to minimize during training.

Machine Learning (ML) A branch of Al that enables systems to learn and improve from

One-Hot Encoding

experience without being explicitly programmed.

A method for representing categorical data as binary vectors, with
one element set to 1 and the others set to 0 to indicate the category.

Overfitting A modeling error in ML which occurs when a function is too closely fit
to a limited set of data points and may therefore fail to predict
additional data reliably.

Perceptron A simple type of artificial neuron or node in a neural network,

Quantitative Structure-Activity
Relationship (QSAR) models

Random Forest (RF), Naive Bayesian (NB),
Support Vector Machine (SVM)

Recurrent Neural Networks (RNN)

Regularization

Simplified Molecular Input Line Entry System (SMILE)

Supervised Learning

Underfitting

Unsupervised Learning

often used as the building block for more complex networks.

Regression or classification models used in the chemical and
hiological sciences and engineering.

ML algorithms used for classification and regression tasks, each with
its unique advantages and disadvantages.

A type of neural network designed to recognize patterns in sequences
of data, such as text, genomes, handwriting, or the spoken word.

A technique used in ML to prevent overfitting by adding an additional
penalty term to the loss function.

A specific line notation for describing the structure of chemical
species using short ASCII strings.

A type of ML where the model learns from labeled training data and
makes predictions based on that learned knowledge.

A situation in ML where a model cannot adequately capture the
underlying structure of the data due to its simplicity.

A type of ML where the model identifies patterns in dataset without
any pre-existing labels, often used for clustering and association
tasks.
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Among the diverse applications of Al, particular intrigue
centers around the utilization of ML algorithms to analyse
intricate datasets. Such algorithms are capable to perform
pattern recognition in clinical imaging, extraction
of fundamental insights from tabular data, and
classification of selected outcomes by understanding
multivariate relationships. The majority of Al techniques
used in drug discovery can be divided into two primary
categories: supervised learning and unsupervised

learning. Unsupervised learning strategies are
frequently employed for exploratory data analysis as
they are valuable in identifying hidden patterns in
data without pre-labelled information or facilitating
data clustering. On the other hand, supervised learning
involves training an algorithm with a set of input data to
accurately predict specific outputs (such as class labels
for classifiers or target values for quantitative outputs)
for new, unseen data. In this field, supervised learning
may be employed to understand molecular features

associated with the bioactivity of compounds; in fact, by

training the algorithm with labelled compounds that are
either active or inactive, it becomes possible to predict
the activity of new pharmacological agents based on
their molecular characteristics [7].

ML encompasses several algorithms, most of which have
been proven effective in the context of drug discovery.
Random Forest (RF), Naive Bayesian (NB) and support
vector machine (SVM) are few of the notable examples
[8-10], which belong to the class of supervised learning
methods. Inrecent times, Deep Learning (DL)hasbecome
popular amongst ML practitioners, due to its intrinsic
capability to understand much more complex patterns
and relationship. DL is a subset of ML where artificial
neural networks with multiple hidden layers (hence the
adjective ‘deep’) are used to model and understand complex
patterns in datasets. The main objective of these models,
usually referred to as Deep Neural Networks (DNNs)
is to mimic the human brain structure, using multiple
layers composed of a large number of computational units
(perceptrons) (Figure 1).

FIGURE 1 - Schematics of a simple Deep Neural Network (DNN); in the bottom window, the mathematic operations of input weighting and output

transformation performed by a single neuron (perceptron) are shown.

Hidden layers

Input

Xi
X2

Output

Backpropagation

] f f(mfx,-wi)

i=1
hias

Clinical Network Srl

https:/ /doi.org/10.53150 / msj.v1i1.39

© 2023 Medicine and Science Journal 5



Medicine & Science Journal | Clinical Pharmacology

From data to drugs: Harnessing machine
learning in drug discovery - A review

Each layer is interconnected upon the previous
layer and works towards minimizing the error
between the expected and generated outputs, using
backpropagation algorithms (e.g., gradient descent)
to adjust weights and biases of the model function
according to such error measurement. Through many
iterations, these hidden parameters are updated and
optimized, making the algorithm gradually more
accurate. DL models are particularly effective when
working with unstructured data such as images,
audio, and text, as they become able to automatically
learn feature hierarchies and extract most relevant
information autonomously, eliminating the need
for manual feature extraction which is necessary in
traditional ML models. In terms of capability, DL
mostly outperform conventional ML algorithms when
dealing with complex, heterogeneous data, which is
often the case in the domain of healthcare. However,
DL models usually relies on large volume of data and
their cognitive processes may be difficult to interpret,
while other ML models (e.g. decision trees, clustering
algorithms) may provide better accuracy when limited
data is available (or in particular situations where
they are more suitable for solving specific problems).
DNNs may be structured using different architectures,
providing flexibility and adaptability to handle complex
scenarios. Notably, feedforward networks have been
widely used as they bear the simplest layout, being
based on forwarding data from input to output in
a streamlined manner. On the other hand, deep
convolutional neural networks (CNNs) bear layers that
are only locally (rather than globally) connected to the
next hidden layer, allowing to perform convolutional
transformation to hierarchically compose simple local
features into complex models. Another interesting
architecture is represented by recurrent neural networks
(RNNs), evolving through a series of repeating modules
of subnetworks. These loops are suitable to analyse
dynamic changes over time where persistent information
is needed throughout many iterative cycles. Long short-
term memory (LSTM) neural networks are a special kind
of RNN, widely applied for their capability of learning
long-term dependencies from timeseries data. Data
clustering with unsupervised learning is whereas carried
out using autoencoder neural networks (AENs), which
apply backpropagation with the purpose of dimension
reduction, aiming at preserving most relevant variables
information. Some

while removing non-essential

examples of the remarkable performance of DNNs in
image recognition and classification tasks are reported
in literature. Esteva and co-workers [11] developed a
model that could perform skin cancer detection with an
accuracy comparable to dermatologists, while Gulshan
and his group [12] have used retinal images to train a
model capable of detecting diabetic retinopathy in a
fast and reliable fashion. Other notable examples are
DL models that have been developed to predict the risk
of various diseases using electronic health records and
patient data, such as those developed by Houssein et al.
[13] to predict the onset of cardiovascular events using
electronic health records, achieving better accuracy
compared to traditional models.

In the field of drug discovery, small drugs are designed by
modulating the biological activity according to a specific
molecular target. The identification of such target must
be supported by a plausible therapeutic hypothesis,
often related to a desired modulation of the disease state.
Upon identifying the optimal target, the selection has to
be validated using physiologically relevant ex vivo and
in vivo models (target validation). Nowadays, biological
research has produced an astonishing amount of data,
including human genomics and proteomic, tabular
clinical data and high-content imaging of patients. With
the advent of ML, computational models have become
more sophisticated and able to discern multivariate
correlation patterns within highly dimensional datasets.
An interesting example of ML in drug discovery is the
use of random forest models to predict drug activity
against cancer cells based on minimal genomic
information and chemical properties[14]. These
models have achieved sensitivities and specificities
of around 87%, yielding an area under the receiver
operating characteristic curve equal to 0.941. They
also develop regression models to predict log (IC
50) values of compounds for cancer cells, achieving
a Pearson correlation coefficient of 0.86 for cross-
validation and up to 0.65-0.73 against blind test sets.
In another study, random forest models were used
for drug-target interaction prediction via Kullback-
Leibler divergence[15]. This method uses E3FP three-
dimensional (3D) molecular fingerprints of drugs as
a molecular representation, allowing the computation
of 3D similarities between ligands within each
target (Q-Q matrix) to identify the uniqueness of
pharmacological targets. The 3D similarity matrices
are transformed into probability density functions via

Clinical Network Srl

https:/ /doi.org/10.53150 / msj.v1i1.39

© 2023 Medicine and Science Journal 6



Medicine & Science Journal | Clinical Pharmacology

From data to drugs: Harnessing machine
learning in drug discovery - A review

Kernel Density Estimation (KDE) as a nonparametric
estimation, successfully predicting Drug-Target
Interactions (DTIs) for representative 17 targets (mean
accuracy: 0.882, out-of-bag score estimate: 0.876, ROC
AUC: 0.990).

However, either by using DL or other ML methods
one must account for considerable drawbacks due to
the diversity and uncertainty of the data used as input
feed. One clear example is represented by the data scale
when considered across multiple variables, leading to a
strong necessity to standardize data based on selected
criteria. Data pre-processing has a deep influence on
the ML outcome and overall performance of the trained
model, adding further bias and deviations in the dataset.
As the collection of data in the field of drug development
can involve millions of compounds, traditional ML tools
might not be able to deal with such abundant scale and
complexity.

3. Drug Discovery

Drug discovery is a complex and expensive process that
involves identifying and developing new drugs to treat
medical conditions. The drug development process often
begins with extensive research in pharmaceutical sciences.
The goal of this step is to identify potential therapeutic
targets associated with a particular disease or condition.
Once a potential drug candidate is identified, it undergoes

preclinical testing in laboratory settings and animal
models to evaluate its safety, efficacy, pharmacokinetic
and pharmacodynamic profiles. If preclinical studies yield
positive results, the drug candidate enters three phases
of CTs with an increasing number of participants. In
summary, Phase 1 trials often mark the first human testing
of a new drug, primarily focusing on establishing safety,
tolerability, and appropriate dosage levels for subsequent
phases. Phase 2 trials are designed to assess the treatment’s
effectiveness and safety within a larger group of patients
with the specific medical condition of interest. Finally,
Phase 3 trials, conducted on a large scale, aim to validate
the medication’s efficacy, monitor potential side effects,
and compare it to established standard treatments or a
placebo in a diverse and extensive patient population.
Once these steps are successfully completed, drug
developers collect all preclinical and CT data and submit
them to regulatory authorities, which ensure that the
drug’s benefits outweigh its risks and meet strict safety
and efficacy standards. Eventually, upon approving
the medicine, it can be marketed and made available to
healthcare professionals and patients. DL methodologies
are able to assist drug design by predicting optimal
molecules from previously learned relationship amongst
large datasets that may include chemical structures,
biological activities, pharmacokinetics, and toxicological
profiles. Deep models can optimize every step involved in
the long process of drug discovery, from the identification
of target to the analysis of CTs data. (Figure 2).

FIGURE 2 - Drug discovery phases and Deep Learning models which may be used.

Target discovery Exploratory research

Candidate drug selection

Clinical trials

- Program selection - Virtual screening - ADME - Phase |
- Target identification - Assay development - Efficacy assay - Phase Il
- Target validation * Drug design - Safety assay - Phase Ill
- Hit to lead
() () () ()
—/ / —/ —/
MathDL KinomeX
and DN
an S
TopologyNet QSAR models
DeepDTA
Affinity2Vec
Generative models
Clinical Network Srl https:/ /doi.org/10.53150 / msj.v1i1.39 © 2023 Medicine and Science Journal 7



Medicine & Science Journal | Clinical Pharmacology

From data to drugs: Harnessing machine
learning in drug discovery - A review

While DL methods have shown outstanding potential
in the domain of drug discovery, traditional ML models
may still hold an advantage in certain research scenarios.
For instance, decision trees are frequently employed in
drug discovery due to their interpretability [16,17]. They
can be utilized to identify crucial features that contribute
to a drug’s effectiveness. The branches of the tree can
provide insights into the decision-making process, such as
“if a drug has feature X and Y, it is likely to be effective”
[16,17]. Moreover, ML models require significantly less
training data compared to neural networks and are often
less computationally demanding than DL methods [16].
Support Vector Machines (SVMs), for example, have been
used to predict drug toxicity with limited data[18]. Logistic
regression, a relatively simple and computationally
efficient ML model, can be used for binary classification
problems in drug discovery, such as predicting whether
a compound will be active or inactive against a specific
biological target [19].

Usually, datasets available for drug development in
pharmaceutical companies include millions of compounds.
Quantitative structure-activity relationship (QSAR)-based
computational model can easily predict large numbers
of compounds or simple physicochemical parameters,
but their accuracy may vary when predicting complex
biological properties, such as the efficacy and adverse
effects of drugs. In addition, QSAR-based models also
suffer from small training sets, experimental data error
in the latter and lack of experimental validations. In 2012,
Merck supported a QSAR ML challenge to endorse the
deployment of DL methodologies in the drug discovery
process, showing that those are significantly better at
predicting absorption, distribution, metabolism, excretion,
and toxicity (ADMET) of drug candidates, when compared
to traditional ML methods [20].

As it has been mentioned earlier in this review, DL
methodologies have shown great promise in the field
of drug discovery. However, their implementation is
not without challenges. One of the primary hurdles is
the requirement for large and diverse datasets of high-
quality chemical and biological data. In drug discovery,
obtaining such data can be challenging due to issues such
as experimental noise, missing values, data imbalance,
data heterogeneity, and data privacy [21]. Another
challenge lies in the interpretability of DL models.
Often considered as black boxes, these models do not
provide much insight into how they make predictions
or what features they use [21,22]. This can limit their

usefulness in drug discovery, where understanding
the molecular mechanisms and the reasoning behind
predictions is crucial for generating new hypotheses and
designing new experiments. DL models can sometimes
be prone to overfitting, a phenomenon where the
model learns the training data too well, to the point
that it performs poorly when presented with new or
unseen data. This can lead to false positives or false
negatives in drug discovery, where the chemical space
is extremely vast and complex, and many molecules
share similar physicochemical properties. Overfitting
is directly opposed to underfitting, where the model
is not powerful enough to minimize the error between
true labels and predicted labels and therefor extract
any useful information from the given data. Lastly, DL
models need to be rigorously validated and evaluated
using appropriate metrics and methods to ensure their
predictive power and applicability domain. However,
there is no consensus on how to best validate and
evaluate DL models in drug discovery, especially when
dealing with imbalanced or sparse data, multiple targets
or tasks, or novel compounds [23].

3.1 Chemical libraries

Chemical libraries are repositories of molecules which
are largely used in chemical industries and academic
in the

atomized into several descriptors, such as structural and

centres. Molecules included database are
physicochemical ones, providing information on chemical
structure, molecular weight, atoms and bonds type, as
well as solubility and acidity /basicity. Depending on the
library, the wealth of information about each molecule may
include pharmacokinetics (how the compound is absorbed,
distributed, metabolized, and excreted by the body),
pharmacodynamics (its biochemical and physiological
effects), and toxicology. Other potential features could be
the synthetic accessibility of the molecule (how easy it is to
synthesize), commercial availability, or even its predicted
activity against specific biological targets. Moreover, with
the advancement of cheminformatics, new methods
for molecular description have been developed. These
include various 2D and 3D molecular descriptors,
such as path-based fingerprints, extended-connectivity
fingerprints, 2D pharmacophore fingerprints and extended
3D fingerprints [24].

Data for pharmacological features are manually extracted
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from published literature and are routinely updated.
Moreover, regulatory agency documents are periodically
checked for schedule of administration, indications
and warnings of drugs. At present, some compound
databases are available online and extensively used

in DL (i.e, PubChem, ChEMBL), containing over 105
million compound candidates [25,26]. Such databases
have integrated advanced information regarding drugs
biological activity, most in the form of QSAR descriptors
[27]. (Table 2)

TABLE 2 - Molecular descriptors available in chemical libraries based on their dimensionality [27].

Descriptor
Dimensions

NON-DIMENSIONAL

1D DESCRIPTORS

2D DESCRIPTORS

3D DESCRIPTORS

In particular, the ChEMBL database maintained by the
European Bioinformatics Institute (EBI) of the European
Molecular Biology Laboratory (EMBL), contains 1.6
million distinct compounds, 14 million bioactivities,
11 thousand biological targets, and other related data.
Furthermore, it is equipped with toolkits for data
mining [28], including tailored resources for specific
tasks, as for example Kinase SARfari (chemogenomics
workbench focused on kinases) or ADME SARfari (tool
for predicting and comparing cross-species ADME
targets). Another notable database is the QM9, which is
a widely used in the field of computational chemistry
and includes quantum mechanical calculations for a
diverse set of small organic molecules [29]. The QM9
dataset provides important molecular properties such
as atomization energies, equilibrium geometries, dipole
moments, and other complex molecular parameters. It

Properties

o Molecular weight
o Atom number
o Atom-type count

o Functional groups
o Substituent atoms

o Molecular topology
o Gonnectivity bonds

o Steric properties

o Molecular geometry

o Surface area and volume
e Binding site properties

has been used for the development and validation of
ML models for molecular property prediction and drug
discovery.

While these databases may comprise millions of
different molecules, they are far from covering the entire
chemical space. As a matter of fact, both empirical and
simulated molecules may exist in available databases.
In this context, empirical molecules refer to those that
have been experimentally observed and characterized
in the laboratory, which data is derived from actual
experimental results, and their properties and
behaviours are known based on empirical evidence.
On the other hand, simulated molecules are those that
have been predicted or generated using computer
simulations, such as molecular dynamics simulations
using mathematical models and algorithms to predict
the properties and effects of molecules according to their
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atomic composition and structure. Predicted molecules
are often collected in designated databases known as
virtual libraries. Such libraries may be divided in static
and dynamic [30]. Static libraries aim at enumerating all
possible virtual molecules that may exist in a specific field.
As an example, GDB-17 report about 116 billion virtual
organic molecules [31]. Other libraries, such as ZINC, has
farless compounds (around 22 million) but are free, focused
on ready-made molecules and provide three- dimensional
conformations, therefore are widely used in ligand- and
structure-based virtual screening studies [32]. Aiming at
completeness and performing a screening afterward as
in static libraries may be good strategies to systematically
screen chemical space; however, it must be considered
that libraries by definition may not be completed, and the
largest the library, the most difficult it becomes to perform
a screening. For this reason, dynamic libraries have been
developed, which may be seen as an algorithm capable of
investigating only the chemical space around molecules
of user interest, thus enabling fastest and more efficient
screening. A common example is PINGUI, a free tool
which identifies reactive site of a molecule and recombines
resulting fragments as building blocks to complement the
core fragment and generating a tailored chemical space
defined by the scientist [33]. Both types of libraries have pros
and cons and should be used combinedly. Future challenges
will involve how to store and screen such a large amount of
data and how to make them available to a larger audience for
research purpose [30].

3.2 Virtual Screening of molecules

In the last decades, virtual screening (VS) has emerged as
a more efficient way to physical screening; it consists of a
computational screening of large libraries of molecules which
compared biochemical properties, such as structure similarity,
and gave a rank of most promising drugs [34,35]. Overall, VS
strategies may be divided in two groups:

1. ligand-based methods: starting from an already existing
input molecule, these methods try to find similar
molecules in an extensive chemical library basing
on atoms types and reciprocal connection and three-
dimensional configuration.

2. structure-based methods: in this case, the search in
chemical libraries aims at finding pharmacological
agents that may fit a known binding site. Since these
latter methods do not require an input compound,

they are more useful than ligand-based ones in case of
biological target with no binders available yet. For the
same reason, as a drawback, structure-based virtual
screening may be less accurate [35].
Ligand-based methods have revolutionized the field
of drug discovery by delivering new drug candidates
more quickly and at a lower cost. These methods allow
for rapid VS of molecules, utilizing pharmacophoric
techniques and alignment methods based on ligand
shape and electrostatic similarity. Such techniques have
proven their efficiency in identifying novel potentially
active compounds [36,37]. On the other hand, structure-
based techniques have unveiled a plethora of potential
drug targets. These techniques facilitate enhanced
meticulous target identification and validation, thereby
reducing efficacy-related drug attrition. Furthermore,
once the crystal structure of a target is obtained
through structural biology techniques such as X-ray
crystallography, Nuclear Magnetic Resonance (NMR),
neutron crystallography (NC), cryo-Electron Microscopy
(cryo-EM), and mass spectrometry (MS) among others,
researchers can swiftly establish the structure-activity
relationship of the compound. This accelerates the
process and reduces the number and time of compound
synthesis [38,39].
Overall, VS allows for a fast screening of large chemical
libraries going beyond empirical screening capabilities
and pragmatically providing lists of likely candidates
for further studies. However, some challenges must still
be faced. First, spatial conformation of molecules is not
fixed: molecular flexibility in aqueous environment and
dynamic structure of receptors make it far more complex
to establish ligand-receptor absolute binding energies and
energetically accessible conformations of receptors; this
process may require relevant resources in terms of time
and CPU power [34,35]. Second, although efficient, VS may
still make mistakes by incorrectly missing a true efficacy
of an agent or, more importantly, by anticipating activity
of an inactive drug. In drug development, even a minimal
false positive rate of VS may lead to a large number of
compounds tested, with both an increase of expenses for
testing and an obscuration of the signal of truly active
molecules [35,40].
DL methods play a vital role in evaluating physicochemical
properties, target affinity, and pharmacokinetic (PK)
profiles of potential drug candidates, becoming a valuable
tool to speed up the drug discovery process. In particular,
DTI prediction has been of great help for drug repositioning
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and virtual drug screening. Binding affinity prediction
has been explored using DL methods. One of the biggest
challenges when manipulating the complex molecular data
consist in the identification of the most optimal encoding
method. Molecules are often encoded according to the
Simplified Molecular Input Line Entry System (SMILES),
which represent and efficient way of storing information
from the molecular graph using string characters [41].
SMILES allows for the linearization of the molecular graph
by enumerating the nodes and edges on the bases of a
certain path. However, it is affected by the randomness
attributed to the selection of the starting atom in the 2D
graph, meaning that multiple SMILES may exist for one
molecule. For example, the canonical SMILE notations
for water and ethanol are O and CCO, respectively.
[42,43] SMILES are usually taken in consideration as they
may be standardized through canonization algorithm.
This latter is a procedure that generates a unique and
unambiguous representation of a molecule, usually by
assigning a priority to each atom based on its connectivity,
atomic number, chirality, and other properties, and then
generating a SMILES string that follows the priority order.
While there are different canonization algorithms, they all
aim to ensure that the same molecule always has the same
canonical SMILES string. Another method is represented
by labelling and “one hot encoding”, a process by which
categorical variables are converted into a new categorical
feature with binary values assigned (1 if present or 0 if
absent), allowing to represent each integer value as a
binary vector [44].

Several DL methods have shown to outperform
conventional ML approaches, due to their generally
better capability of handling high-dimensional data
that is particularly useful in domains with large datasets
including hundreds of features. DL methods are also
largely superior at pattern recognition, which proves
to be extremely helpful when discerning patterns and
discriminative features in molecules with complex
structure and topology. In some cases, DL models are
enhanced by using algorithms that have been widely
validated in conventional ML, as is the case of Cheng
Chen and co-workers, who have applied XGBoost algorithm
together with multi-layered DNNs to build a drug-target
interactions predictor, achieving an accuracy above 98% and
outclassing other state-of- the-art prediction systems [45]. A
real-life example is high-performance DL models is brought
by the Affinity2Vec, a drug-target binding affinity prediction
model based on representation learning [46].

Another network-based approach is DeepDTA [47], which
uses a heterogeneous graph attention (HGAT) model
coupled with bidirectional ConvLSTM to learn topological
information of compound molecules and modelling
spatial-sequential information based on the molecular
SMILES sequences. This is yet a further examples of
superior deep networks performances, due to the ability
to learn hierarchical representations. This means that
they can learn multiple levels of abstraction from data,
where lower layers hold information about general
molecular shape and topology, while deeper layers
may gain insight on more complex physicochemical
properties. Beside the model layout, other approaches
may be undertaken to improve the capability of DL; such is
the case of two models, namely MathDL and TopologyNet,
which make use of algebraic topology to identify
interactions between protein and ligand. In particular,
MathDL [48] exploited advanced mathematical techniques
such as graph theory to encode the physicochemical
interactions into lower-dimensional rotational and
translational invariant representations. TopologyNet [49] is
created as an ensemble of multi-channel topological CNNs
to represent the protein-ligand complex geometry through
1D topological invariants for affinity prediction and protein
mutation. Finally, some DL applications have been focused
on specific segments of the drugs chemical space, such is
the case of KinomeX. The latter is an online platform to
predict polypharmacology effects of kinases solely based
on their chemical structures. A multi-task DNN model
trained with over 140 000 bioactivity data points for 391
kinases carries out predictions for the users, enabling them
to create a comprehensive kinases interaction network for
designing novel chemical modulators [50].

3.3 De Novo Drug Design

It has been estimated that the total number of organic
compound that may potentially be synthesized ranges
from 10% to 10% [35]. Searching for a potentially useful
drug amidst this vast compound space is akin to looking
for a needle in a haystack for pharmaceutical industries,
as it accounts for a large amount of money and time. For
this reason, rational de novo design approach has always
been used. De novo drug design essentially involves the
creation of new chemical structures with specific desired
properties, such as a particular biological response.

Traditionally, computational methods proceeded one
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molecular fragment at a time to highlight worse or better
biochemical properties of the new drug. This process may
obviously benefit from automated methods for constructing
these novel structures. This is the reason why ML may
be extremely helpful in this field as well and Generative
Models (GMs) have been proposed. A generative model
is a ML algorithm which may retrieve data of existing
chemical compounds to identify patterns and chemistry
rules which may be employed to generate new molecules
[51]. Technically, GMs are made of three parts linked by a
neural network: first, an encoding module converts a set
of molecules into a continuous vectorized representation;
then a decoding module reconstructs the continuous vector
representation back into a molecule; lastly, a predictive
module computes one or multiple properties for vectors
derived from the continuous representation [35]. Gomez-
Bombarelli and colleagues were among the first to propose
this new method based on encoding of compounds and
showing good prediction power [52].

The choice of molecular representation to be presented to the
encoder significantly influences the learning process of the
model, determining how molecular information is acquired.
There are three primary types of representations: 3D (e.g,,
coordinate-based), two-dimensional (e.g., molecular graphs)
and one-dimensional. The commonly used 1D representation
is SMILES notation, which is particularly suitable for neural
network architectures designed for language processing [7].
For example, a generative neural network trained on SMILES
was recently developed to de novo design a ligand for nuclear
receptor related 1 (Nurrl), a transcription factor involved in
neurodegenerative disease pathways; these strategies led
to the synthesis of two candidates with desired activity, one
of which with a notable potency, even if this network was
trained with a relatively limited number of molecules due to
the lack of active drugs in this setting [53].

However, ML models often struggle to fully comprehend
the intricacies of SMILES grammar, resulting in the
generation of invalid SMILES that cannot be translated
into meaningful molecular structures; therefore, other
strategies have been proposed [54]. Similarly, considering
molecular 3D structure may represent an issue, as different
forcefields and interactions are involved in determining
spatial conformation. To address this challenge, recent
efforts have focused on training 3D generative models
using extensive sets of conformers. For example, the
geometric ensemble of molecules (GEOM) comprises over
37 million molecular conformations for about half million
molecules [55].

3.4 Chemical synthesis of drugs

Not only must new drugs be designed, but they have
also to be effectively synthesized; only a relatively small
number of chemical reactions have been shown to be
used in recent years and few have been introduced
compared to 40 years ago. On the one hand, these
commonly used reactions are reliable and have led to
a wide range of commercially available building
blocks that can be effectively exploited. On the other,
despite the growth in synthesized drugs, the limited
variety of reactions used has led to certain regions
of the chemical space being densely populated with
structurally similar molecules, while other regions
remain unexplored [56].

Recent developments include the use of Al to process
large databases of organic reactions and propose
new synthetic pathways. This process consists of two
activities: research and reaction prediction. The research
involves identifying a series of chemical reactions to form
a retrosynthetic pathway between a target compound
and starting materials. Afterwards, reaction prediction
determines the feasibility of those reactions basing on
the context [51,57].

Two approaches may be used to investigate steps of
organic synthesis: template-based and template-free
methods. Template-based methods use hand-coded
reaction templates to describe determined steps of
bond formation among atoms: they have been widely
used for decades, but can be computationally expensive
and limited by the quality of the templates [58]. More
recently, template-free methods have been introduced:
they use neural networks to learn the relationship
between reactants and products. In particular, neural
networks consider chemical blocks as a sequence of
characters, such as in the SMILES strings. After a proper
training on a large database of chemical compounds,
the neural network tries to generate reactants given
the proposed products, thus suggesting new chemical
reactions [59]. Additionally, neural networks may be
trained by associating a large number of molecules
to known originating reactions in order to predict the
probability of a further reaction to produce the desired
product [60]. However, assessing the feasibility of
unprecedented reactions can be difficult, as the same
reaction in different conditions (i.e. time, temperature
and catalysts) may lead to different yields; therefore, it
may still takes resources to be validated [51].
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4. Drug repurposing

Drug repurposing is the process of identifying new
therapeutic applications for existing drugs. This strategy is
achievable as drugs may have several targets, which may
induce different effects according to contexts and diseases.
Drug repositioning has various advantages over traditional
drug development, including shorter development times
and lower costs, given that the safety and pharmacokinetic
profile of the drugs have already been established [61].
However, finding novel uses for currently available
medications is a difficult endeavour as it necessitates a
thorough comprehension of the drug’s mechanism of
action as well as the underlying molecular pathways of the
condition of interest. AT has emerged as a viable technique
for drug repurposing, as it can scan vast volumes of data
on pharmacological characteristics and disease pathways
in order to find new therapeutic targets and indications. As
an example, drug repositioning strategies were proposed
in the first phases of Coronavirus disease (COVID-19)
pandemics. In this setting, challenges in drug repurposing
included limitations of preclinical assays, suboptimal CT
designs, lack of appropriate clinical endpoints, and the
absence of reproducible preclinical animal models. ML was
thought to provide in the shortest time pharmacological
agents to treat the disease while bypassing traditional
development steps required for new drugs [62]. Similarly,
an integrative deep network that combined multiple
relationships and leveraged a vast amount of information
embedded as vectors from the PubMed and DrugBank
databases was proposed [63]. 41 drugs, including
dexamethasone and indomethacin, were predicted to have
repurposing potential as therapeutic agents against for
treating SARS-CoV-2.

Furthermore, several Al-based drug repurposing methods
have been developed, including ML algorithms, network-
based approaches, and natural language processing
methods. These strategies typically involve the integration
of multiple data sources and the use of advanced statistical
and computational techniques to identify potential drug-
disease associations. One of the main benefits of Al-based
drug repurposing is the ability to integrate multiple
data sources with Real-World data, such as electronic
health records and CT data, to identify new drug-disease
associations that might not be immediately obvious using
traditional approaches and statistical methods which are
limited in handling a substantial amount of data. Liu and
colleagues proposed a framework for screening of on-

market drug candidates by retrospectively analysing Real-
World data [64]. In particular, they emulated randomised
CTs to systematically evaluate drug efficacy on a panel of
diseases; moreover, DL techniques were used to control for
confounders in real-world data through a propensity score
estimation model. Additionally, they provide an example
which demonstrates the effectiveness of the proposed
computational drug repurposing framework in identifying
potential drug candidates with beneficial effects on disease
outcomes for coronary artery disease patients, even
outreaching the performances of other existing pre-clinical
drug repurposing methods. This new approach may be
exploited whenever real RCTs are not available despite a
large volume of observational data.

However, further progresses are required. Data and
model harmonization are essential for the development of
broadly applicable and interoperable computational tools
for drug repositioning. Similarly, data security and privacy
concerns must be addressed through careful consideration
of the data lifecycle and the implementation of regulations
and transparency [62].

5. Clinical Trials

CTs are the gold standard to prove efficacy of a drug and
are required by regulatory agencies for releasing marketing
authorisation. Although CTs require a large amount of
time and resources to be performed, a positive result is not
guaranteed even in case of a true effect of the drug; in fact,
many pitfalls are described in terms of patients” enrolment,
study design, trial conduction and phase transitions,
which may lead to trial unsuccess. Recently, ML has been
discussed as a way to overcome these problems and
offering several opportunities for improving the efficiency
of different trial process steps [65,66].

First, patients’ enrolment is one of the major challenges
in CT conduction. This is due to both complex protocol
designs, which makes it difficult to include subjects and
fully adhere to the conduction, and lack of interest of the
patients. It has been shown that only 15% of CTs manage to
entirely avoid patients dropout, while average dropoutrates
are about 30% [66]. Notably, a poor recruitment with a high
number of dropouts may lead to trial discontinuation due
to the inability to demonstrate the outcome. In this setting,
ML algorithms can identify potential CT participants by
analysing electronic health records, large datasets, and
patient files. By more effectively identifying the right
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participants, they can help streamline the recruitment
process and speed up trial enrolment, thus leading to faster
and more reliable results [67]. Additionally, this may reduce
early stopping of CTs due to insufficient patient enrolment
or high rates of dropout. It has been suggested that Al may
predict likelihood of dropouts from CT: this information may
be used to focus effort on these patients to provide additional
education to encourage longer participation [68,69].

Second, CT design may be optimized as well under
different points of view. It has been shown that AI may
simulate different scenarios according to trial design,
sample size, randomization strategy, and statistical
analysis plan and evaluate their likely outcomes [66].
Moreover, Al may even permit the substitution of control
group with an artificial one in future: given a large
amount and variety of data from each enrolled patient,
Al might predict individual natural history and disease
progression; in particular, this study design emulates the
impact of placebo on virtual patients and compares it to the
intervention group of RCT; by employing synthetic control
arms, this approach ensures that all enrolled participants
receive the experimental intervention, thereby addressing
concerns related to treatment assignment and the potential
for unblinding [69,70]. However, these strategies need to
be fully validated in order to ensure an efficacy comparable
with traditional trials.

Third, trial conduction may be improved as well. ML may
provide real-time monitoring of patient data to ensure
safety and efficacy parameters are met. Continuous data
analysis might identify patterns, outliers, adverse events
and treatment responses in a timely manner, thus enabling
prompt intervention and improved patient safety. Non-
stop monitoring may be further permitted by wearable
devices which monitor patient’s parameters 24 hours a
day, thus reducing number of missing data points [71].
Even traditional tests performed during CTs may be
affected: ML techniques can automate the evaluation of
trial endpoints, such as analysis of radiographic images
or pathology slides, thus reducing manual workload, and
enabling more efficient data analysis. For instance, Erdaw
et al. developed a model to accurately make diagnosis of
COVID-19 using digital chest X-ray image. Remarkably,
the model achieves an accuracy of over 97% [72].
Therefore, by integrating patients’ characteristics, historical
data, biomarkers and treatment outcomes, ML may help
optimize treatment options by identifying patient subgroups
that may respond differently to interventions; this may
be relevant considering the increasing interest raised by

personalised medicine in order to tailor pharmacological
treatment to each patients’ characteristics [73].

Lastly, ML can be employed to assess the likelihood of
success during CT phase transitions. This aspect holds
great importance considering that only one out of every
five drugs that enter phase 1 CTs ultimately receives
marketing authorization [66]. Specific algorithms have
shown an average accuracy of approximately 80% in
predicting the outcome of these transitions. This capability
can offer advantages to both trialists, who can utilize the
information to refine protocol designs, and pharmaceutical
industries, which can save resources and allocate budgets
more effectively [74].

6. Conclusions

ML methodologies can have a deep impact on drug
development; DL, especially through the use of generative
models, has demonstrated significant advancements in
drug design and investigating protein-ligand binding
processes, leading to a renewed enthusiasm in the field.
Despite progress made in recent years, at the moment
GMs are unlikely to automatically produce drug
candidates with optimal properties due to the complexity
of molecular interactions. In fact, these interactions hinge
on the three-dimensional conformation of receptors,
which, in turn, relies both on the structural composition of
aminoacidic chain, and environmental factors, including
pH, temperature and oxidation. These factors influence
molecular flexibility, receptor affinity, and other features
that algorithms may not consistently predict automatically
in every instance.

For these reasons, the input of human expertise continues

to be crucial. Therefore, further advancements in next years

are required in terms of:

1. data curation and quality,

2. appropriate model validation and ways to handling
uncertainty in predictions;

3. improving data accessibility, ensuring clearer
interpretation, better readability, and the potential
for reuse, with the aim of reducing resources waste,
accelerating innovation and providing new drugs for
unmet clinical needs.

Automation and combining multiple approaches -

generative, predictive, synthesis planning - will surely

be promising research directions. Another challenge
is represented by performance evaluation: comparing
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experimentally determined and predicted values for
physical properties or biological activity may represent
a benchmark for ML models evaluation; additionally,
comparison among techniques should be performed as
well, in order to minimise costs and maximise results.

The final phases of drug development have also benefited
from these new techniques. Incorporating AI in CTs
holds great promise, as it is predicted to advance medical
research and make it more sustainable. Continuous efforts
have been made to investigate the potential of Al in order
to conduct more efficient and profitable trials. To fully
validate these methods, however, much more research
is needed. Additionally, as there is still a lack of specific
ethical and regulatory guidance focused on AI’s use in CTs,
adoption of digital transformation will likely be cautious
and slow. Sponsors, investigators, and regulators may
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