
Medicine & Science Journal 2023; 1(1):e202339 

https://doi.org/10.53150/msj.v1i1.39

1Clinical Network Srl © 2023 Medicine and Science Journal

REVIEW ARTICLE

OOppeenn AAcccceessss

©  Gazzaniga G. et al. | MSJ 2023 | 
1(1):e202339 

This article is distributed under the 
terms of the Creative Commons 
Attribution 4.0 International License 
(http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any 
medium, provided you give appropriate 
credit to the original author(s) and the 
source, provide a link to the Creative 
Commons license, and indicate if 
changes were made.

Received: July 14, 2023
Revised: October 28, 2023 
Accepted: November 07, 2023
Published: November 22, 2023

Article information are listed at the end 
of this article.

Abstract

Drug development is a rigorous process essential for improving patient 
outcomes. However, this complex endeavour requires significant investment 
and time. The integration of Machine Learning (ML) techniques in drug 
discovery can revolutionize the field by efficiently processing large amounts 
of data and accelerating the identification and development of potential drug 
candidates. This review highlights ML’s impact across drug development 
stages, from design to clinical trials (CTs).
Recently, the availability of high-quality databases and the surge in data 
digitalization has promoted the development of several ML algorithms, which 
have proved to be effective in classifying outcomes based on multivariate 
relationships. Particularly, Deep Learning (DL) architectures such as 
feedforward networks, Recurrent Neural Networks (RNNs), Convolutional 
Neural Networks (CNNs), and Long Short-Term Memory (LSTM) neural 
networks, represent a subset of ML which has been gaining popularity because 
of its ability to emulate the human brain and handle more complex tasks, thus 
representing a paradigm shift in data analysis and prediction.
ML plays a vital role in virtual screening, de-novo drug design and drug 
repurposing. Virtual screening methods can rapidly screen large chemical 
libraries and identify promising candidates for further investigation. De-novo 
drug design involves the use of ML-based generative models to produce new 
chemical structures with desired properties. Drug repurposing aims to identify 
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new therapeutic uses for existing drugs. Additionally, 
ML can improve the efficiency of CTs by addressing 
challenges related to patient enrolment, study design, 
and phase transition.
The integration of ML with high-quality datasets can 
significantly improve drug development process, 
thereby increasing efficiency and success rates. 
However, it is important to address issues related to data 
quality, preprocessing bias, molecular representation, 
and interpretation of results. Harnessing the power of AI 
can accelerate drug development, ultimately benefiting 
patients and the healthcare industry as a whole.

 
1. Introduction

Drug development is a complex and rigorous 
process that involves the discovery, design, testing and 
approval of new drugs for the treatment, prevention 
or management of diseases and health conditions. It 
is an important aspect of healthcare that is critical to 
improve patient outcomes and address unmet medical 
needs.
Due to its highest standards, drug development process 
is long and expensive, often lasting several years and 
requiring significant investment. Up to an amount close 
to 2.5 billion dollars and five to ten years may be required 
to pass from bench-side to market [1–4]. Furthermore, 
despite rigorous testing, not all drug candidates make it 
through all stages of development due to limited or no 
therapeutic efficacy in humans or unacceptable toxicity 
leading to treatment discontinuation. It has been 
estimated that only 59% of drugs evaluated in phase 3 
trials ultimately secure final approval from the Food and 
Drug Administration (FDA), and astonishingly, when 
considering the phase 1 trials, a mere 13.8% of drugs 
entering this phase ultimately attain final regulatory 
approval [5].
In the realm of drug discovery, the integration of 
Artificial Intelligence (AI) holds immense potential 
in terms of improving the efficiency and success rate 
of drug development process. However, its success 
heavily relies on the availability of a high-quality 
databases. In recent years, the pharmaceutical sector, 
as many others, has witnessed a remarkable surge in 
data digitalization, revolutionizing the way information 
is handled. This exponential growth of digitized 
data presented a formidable challenge of effectively 

acquiring, scrutinizing, and analysing the vast 
knowledge available. The development of advanced 
IT infrastructure has facilitated the organization, and 
accessibility of these data through user-friendly and 
widely accessible online databases.
Given this background, AI has emerged as a powerful 
tool for efficiently managing vast amounts of data 
through enhanced automation. This capability had 
a profound impact on the field of drug discovery, 
resulting in a paradigm shift in the applications of AI 
techniques. Machine Learning (ML), in particular, has 
been extensively utilized to analyse clinical data, learn 
from a large number of examples, and make predictions 
about the behaviour of unexplored datasets. These 
advancements have revolutionized the landscape of 
drug discovery, enabling us to gain valuable insights 
and make informed decisions based on the power 
trained models [6].
In this Review, we will try to give a brief overview of 
how ML may have an impact on different phases of 
drug development, from drug design to Clinical Trials 
(CTs). Particularly, we will commence by delineating 
the requisite technical specifications and operational 
procedures inherent to ML. Subsequently, our focus 
will pivot towards a comprehensive exploration of 
Drug Discovery, starting with its foundation: chemical 
libraries; this segment will elucidate the storage of 
potential drug candidates and the pivotal role that 
AI plays in either facilitating compound screening or 
engendering novel ones. Following this, we will explore 
the realm of Drug Repurposing, an alternative approach 
to conventional new drug development, which can serve 
as a valuable strategy to address unmet medical needs. 
Lastly, we will conclude by delving into the latest stages 
of drug development, where we will discuss the various 
ways in which AI exerts its influence across different 
phases, steps, and prospects of CTs.
  

2. Machine Learning: technical bases

While AI finds extensive application within the biomedical 
sciences, it predominantly retains its character as a technical 
discipline grounded in fundamental informatics. In 
order to furnish readers with a navigational aid within 
this domain, we provided concise definitions of the most 
technically nuanced terms employed in this review in 
Table 1.
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TABLE 1 - Brief definition of technical AI terms.									                      1/2

Activation Function A function used in neural networks that adds non-linearity to the 
network, enabling it to learn from more complex data.

Artificial Intelligence (AI) The science of creating intelligent machines capable of performing 
tasks that typically require human intelligence.

American Standard Code
for Information Interchange (ASCII)

Character encoding standard for electronic communication, 
which is commonly used to represent text in computers and 
other devices.

Autoencoder Neural Networks (AENs) Neural networks used for data compression and feature learning, 
consisting of an encoder and a decoder.

Backpropagation A method used in artificial neural networks to calculate the error 
contribution of each neuron after a batch of data is processed, going 
back from the output layer to the hidden and input layers.

Canonization algorithm An algorithm used to transform data or structures into a standardi-
zed or canonical form, making them more easily comparable or 
searchable.

Convolutional Neural Network (CNN) A type of deep learning model primarily used for analyzing visual 
imagery. It uses convolutional layers to filter inputs for useful 
information.

Deep Learning (DL) A subset of ML that uses artificial neural networks with multiple 
layers (deep structures) to model and understand complex patterns.

Deep Neural Network Neural networks with multiple hidden layers, allowing them to model 
complex relationships in data.

Feedforward Networks A type of neural network where the information flow is unidirectional, 
moving forward from the input nodes to the output nodes without 
cycles or loops.

Generative Models (GMs) ML or DL models used to generate synthetic data, upon being trained 
on real data and have learned how to optimally approximate them.

Gradient Descent An optimization algorithm used to find the values of parameters that 
minimize a given function by iteratively moving in the direction of 
steepest descent.

Hidden layer The neural network layers that usually stay in between of the input 
and output layers.

Kernel Density Estimation (KDE) Non-parametric method used in statistics to estimate the probability 
density function of a random variable, through using a non- negative, 
kernel function, to smooth the data points and generate a continuous 
and smooth estimate of the underlying distribution.

Terminology Description
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Long Short-Term Memory (LSTM)
Neural Networks

A special kind of RNN capable of learning long-term dependencies, 
widely used in tasks involving sequential data and timeseries.

Loss function A function to measure how well the network is performing with 
respect to its given training sample and the expected output. It 
quantifies the disparity between the predicted and actual outcomes, 
which is what the model seeks to minimize during training.

Machine Learning (ML) A branch of AI that enables systems to learn and improve from 
experience without being explicitly programmed.

One-Hot Encoding A method for representing categorical data as binary vectors, with 
one element set to 1 and the others set to 0 to indicate the category.

Overfitting A modeling error in ML which occurs when a function is too closely fit 
to a limited set of data points and may therefore fail to predict 
additional data reliably.

Perceptron A simple type of artificial neuron or node in a neural network, 
often used as the building block for more complex networks.

Quantitative Structure-Activity 
Relationship (QSAR) models

Regression or classification models used in the chemical and 
biological sciences and engineering.

Random Forest (RF), Naive Bayesian (NB), 
Support Vector Machine (SVM)

ML algorithms used for classification and regression tasks, each with 
its unique advantages and disadvantages.

Recurrent Neural Networks (RNN) A type of neural network designed to recognize patterns in sequences 
of data, such as text, genomes, handwriting, or the spoken word.

Regularization A technique used in ML to prevent overfitting by adding an additional 
penalty term to the loss function.

Simplified Molecular Input Line Entry System (SMILE) A specific line notation for describing the structure of chemical 
species using short ASCII strings.

Supervised Learning A type of ML where the model learns from labeled training data and 
makes predictions based on that learned knowledge.

Underfitting A situation in ML where a model cannot adequately capture the 
underlying structure of the data due to its simplicity.

Unsupervised Learning A type of ML  where the model identifies patterns in dataset without 
any pre-existing labels, often used for clustering and association 
tasks.

Terminology Description
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Among the diverse applications of AI, particular intrigue 
centers around the utilization of ML algorithms to analyse 
intricate datasets. Such algorithms are capable to perform 
pattern recognition in clinical imaging, extraction 
of fundamental insights from tabular data, and 
classification of selected outcomes by understanding 
multivariate relationships. The majority of AI techniques 
used in drug discovery can be divided into two primary 
categories: supervised learning and unsupervised 
learning. Unsupervised learning strategies are 
frequently employed for exploratory data analysis as 
they are valuable in identifying hidden patterns in 
data without pre-labelled information or facilitating 
data clustering. On the other hand, supervised learning 
involves training an algorithm with a set of input data to 
accurately predict specific outputs (such as class labels 
for classifiers or target values for quantitative outputs) 
for new, unseen data. In this field, supervised learning 
may be employed to understand molecular features 
associated with the bioactivity of compounds; in fact, by 

training the algorithm with labelled compounds that are 
either active or inactive, it becomes possible to predict 
the activity of new pharmacological agents based on 
their molecular characteristics [7].
ML encompasses several algorithms, most of which have 
been proven effective in the context of drug discovery. 
Random Forest (RF), Naive Bayesian (NB) and support 
vector machine (SVM) are few of the notable examples 
[8–10], which belong to the class of supervised learning 
methods. In recent times, Deep Learning (DL) has become 
popular amongst ML practitioners, due to its intrinsic 
capability to understand much more complex patterns 
and relationship. DL is a subset of ML where artificial 
neural networks with multiple hidden layers (hence the 
adjective ‘deep’) are used to model and understand complex 
patterns in datasets. The main objective of these models, 
usually referred to as Deep Neural Networks (DNNs) 
is to mimic the human brain structure, using multiple 
layers composed of a large number of computational units 
(perceptrons) (Figure 1).

FIGURE 1 - Schematics of a simple Deep Neural Network (DNN); in the bottom window, the mathematic operations of input weighting and output 
transformation performed by a single neuron (perceptron) are shown.
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Each layer is interconnected upon the previous 
layer and works towards minimizing the error 
between the expected and generated outputs, using 
backpropagation algorithms (e.g., gradient descent) 
to adjust weights and biases of the model function 
according to such error measurement. Through many 
iterations, these hidden parameters are updated and 
optimized, making the algorithm gradually more 
accurate. DL models are particularly effective when 
working with unstructured data such as images, 
audio, and text, as they become able to automatically 
learn feature hierarchies and extract most relevant 
information autonomously, eliminating the need 
for manual feature extraction which is necessary in 
traditional ML models. In terms of capability, DL 
mostly outperform conventional ML algorithms when 
dealing with complex, heterogeneous data, which is 
often the case in the domain of healthcare. However, 
DL models usually relies on large volume of data and 
their cognitive processes may be difficult to interpret, 
while other ML models (e.g. decision trees, clustering 
algorithms) may provide better accuracy when limited 
data is available (or in particular situations where 
they are more suitable for solving specific problems).
DNNs may be structured using different architectures, 
providing flexibility and adaptability to handle complex 
scenarios. Notably, feedforward networks have been 
widely used as they bear the simplest layout, being 
based on forwarding data from input to output in 
a streamlined manner. On the other hand, deep 
convolutional neural networks (CNNs) bear layers that 
are only locally (rather than globally) connected to the 
next hidden layer, allowing to perform convolutional 
transformation to hierarchically compose simple local 
features into complex models. Another interesting 
architecture is represented by recurrent neural networks 
(RNNs), evolving through a series of repeating modules 
of subnetworks. These loops are suitable to analyse 
dynamic changes over time where persistent information 
is needed throughout many iterative cycles. Long short-
term memory (LSTM) neural networks are a special kind 
of RNN, widely applied for their capability of learning 
long-term dependencies from timeseries data. Data 
clustering with unsupervised learning is whereas carried 
out using autoencoder neural networks (AENs), which 
apply backpropagation with the purpose of dimension 
reduction, aiming at preserving most relevant variables 
while removing non-essential information. Some 

examples of the remarkable performance of DNNs in 
image recognition and classification tasks are reported 
in literature. Esteva and co-workers [11] developed a 
model that could perform skin cancer detection with an 
accuracy comparable to dermatologists, while Gulshan 
and his group [12] have used retinal images to train a 
model capable of detecting diabetic retinopathy in a 
fast and reliable fashion. Other notable examples are 
DL models that have been developed to predict the risk 
of various diseases using electronic health records and 
patient data, such as those developed by Houssein et al. 
[13] to predict the onset of cardiovascular events using 
electronic health records, achieving better accuracy 
compared to traditional models.
In the field of drug discovery, small drugs are designed by 
modulating the biological activity according to a specific 
molecular target. The identification of such target must 
be supported by a plausible therapeutic hypothesis, 
often related to a desired modulation of the disease state. 
Upon identifying the optimal target, the selection has to 
be validated using physiologically relevant ex vivo and 
in vivo models (target validation). Nowadays, biological 
research has produced an astonishing amount of data, 
including human genomics and proteomic, tabular 
clinical data and high-content imaging of patients. With 
the advent of ML, computational models have become 
more sophisticated and able to discern multivariate 
correlation patterns within highly dimensional datasets. 
An interesting example of ML in drug discovery is the 
use of random forest models to predict drug activity 
against cancer cells based on minimal genomic 
information and chemical properties[14]. These 
models have achieved sensitivities and specificities 
of around 87%, yielding an area under the receiver 
operating characteristic curve equal to 0.941. They 
also develop regression models to predict log (IC 
50) values of compounds for cancer cells, achieving 
a Pearson correlation coefficient of 0.86 for cross-
validation and up to 0.65–0.73 against blind test sets. 
In another study, random forest models were used 
for drug–target interaction prediction via Kullback–
Leibler divergence[15]. This method uses E3FP three-
dimensional (3D) molecular fingerprints of drugs as 
a molecular representation, allowing the computation 
of 3D similarities between ligands within each 
target (Q–Q matrix) to identify the uniqueness of 
pharmacological targets. The 3D similarity matrices 
are transformed into probability density functions via 
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Kernel Density Estimation (KDE) as a nonparametric 
estimation, successfully predicting Drug-Target 
Interactions (DTIs) for representative 17 targets (mean 
accuracy: 0.882, out-of-bag score estimate: 0.876, ROC 
AUC: 0.990).
However, either by using DL or other ML methods 
one must account for considerable drawbacks due to 
the diversity and uncertainty of the data used as input 
feed. One clear example is represented by the data scale 
when considered across multiple variables, leading to a 
strong necessity to standardize data based on selected 
criteria. Data pre-processing has a deep influence on 
the ML outcome and overall performance of the trained 
model, adding further bias and deviations in the dataset. 
As the collection of data in the field of drug development 
can involve millions of compounds, traditional ML tools 
might not be able to deal with such abundant scale and 
complexity.

3. Drug Discovery

Drug discovery is a complex and expensive process that 
involves identifying and developing new drugs to treat 
medical conditions. The drug development process often 
begins with extensive research in pharmaceutical sciences. 
The goal of this step is to identify potential therapeutic 
targets associated with a particular disease or condition. 
Once a potential drug candidate is identified, it undergoes 

preclinical testing in laboratory settings and animal 
models to evaluate its safety, efficacy, pharmacokinetic 
and pharmacodynamic profiles. If preclinical studies yield 
positive results, the drug candidate enters three phases 
of CTs with an increasing number of participants. In 
summary, Phase 1 trials often mark the first human testing 
of a new drug, primarily focusing on establishing safety, 
tolerability, and appropriate dosage levels for subsequent 
phases. Phase 2 trials are designed to assess the treatment’s 
effectiveness and safety within a larger group of patients 
with the specific medical condition of interest. Finally, 
Phase 3 trials, conducted on a large scale, aim to validate 
the medication’s efficacy, monitor potential side effects, 
and compare it to established standard treatments or a 
placebo in a diverse and extensive patient population.
Once these steps are successfully completed, drug 
developers collect all preclinical and CT data and submit 
them to regulatory authorities, which ensure that the 
drug’s benefits outweigh its risks and meet strict safety 
and efficacy standards. Eventually, upon approving 
the medicine, it can be marketed and made available to 
healthcare professionals and patients. DL methodologies 
are able to assist drug design by predicting optimal 
molecules from previously learned relationship amongst 
large datasets that may include chemical structures, 
biological activities, pharmacokinetics, and toxicological 
profiles. Deep models can optimize every step involved in 
the long process of drug discovery, from the identification 
of target to the analysis of CTs data. (Figure 2). 

FIGURE 2 - Drug discovery phases and Deep Learning models which may be used.
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While DL methods have shown outstanding potential 
in the domain of drug discovery, traditional ML models 
may still hold an advantage in certain research scenarios. 
For instance, decision trees are frequently employed in 
drug discovery due to their interpretability [16,17]. They 
can be utilized to identify crucial features that contribute 
to a drug’s effectiveness. The branches of the tree can 
provide insights into the decision-making process, such as 
“if a drug has feature X and Y, it is likely to be effective” 
[16,17]. Moreover, ML models require significantly less 
training data compared to neural networks and are often 
less computationally demanding than DL methods [16]. 
Support Vector Machines (SVMs), for example, have been 
used to predict drug toxicity with limited data[18]. Logistic 
regression, a relatively simple and computationally 
efficient ML model, can be used for binary classification 
problems in drug discovery, such as predicting whether 
a compound will be active or inactive against a specific 
biological target [19].
Usually, datasets available for drug development in 
pharmaceutical companies include millions of compounds. 
Quantitative structure-activity relationship (QSAR)-based 
computational model can easily predict large numbers 
of compounds or simple physicochemical parameters, 
but their accuracy may vary when predicting complex 
biological properties, such as the efficacy and adverse 
effects of drugs. In addition, QSAR-based models also 
suffer from small training sets, experimental data error 
in the latter and lack of experimental validations. In 2012, 
Merck supported a QSAR ML challenge to endorse the 
deployment of DL methodologies in the drug discovery 
process, showing that those are significantly better at 
predicting absorption, distribution, metabolism, excretion, 
and toxicity (ADMET) of drug candidates, when compared 
to traditional ML methods [20].
As it has been mentioned earlier in this review, DL 
methodologies have shown great promise in the field 
of drug discovery. However, their implementation is 
not without challenges. One of the primary hurdles is 
the requirement for large and diverse datasets of high-
quality chemical and biological data. In drug discovery, 
obtaining such data can be challenging due to issues such 
as experimental noise, missing values, data imbalance, 
data heterogeneity, and data privacy [21]. Another 
challenge lies in the interpretability of DL models. 
Often considered as black boxes, these models do not 
provide much insight into how they make predictions 
or what features they use [21,22]. This can limit their 

usefulness in drug discovery, where understanding 
the molecular mechanisms and the reasoning behind 
predictions is crucial for generating new hypotheses and 
designing new experiments. DL models can sometimes 
be prone to overfitting, a phenomenon where the 
model learns the training data too well, to the point 
that it performs poorly when presented with new or 
unseen data. This can lead to false positives or false 
negatives in drug discovery, where the chemical space 
is extremely vast and complex, and many molecules 
share similar physicochemical properties. Overfitting 
is directly opposed to underfitting, where the model 
is not powerful enough to minimize the error between 
true labels and predicted labels and therefor extract 
any useful information from the given data. Lastly, DL 
models need to be rigorously validated and evaluated 
using appropriate metrics and methods to ensure their 
predictive power and applicability domain. However, 
there is no consensus on how to best validate and 
evaluate DL models in drug discovery, especially when 
dealing with imbalanced or sparse data, multiple targets 
or tasks, or novel compounds [23].

3.1 Chemical libraries

Chemical libraries are repositories of molecules which 
are largely used in chemical industries and academic 
centres. Molecules included in the database are 
atomized into several descriptors, such as structural and 
physicochemical ones, providing information on chemical 
structure, molecular weight, atoms and bonds type, as 
well as solubility and acidity/basicity. Depending on the 
library, the wealth of information about each molecule may 
include pharmacokinetics (how the compound is absorbed, 
distributed, metabolized, and excreted by the body), 
pharmacodynamics (its biochemical and physiological 
effects), and toxicology. Other potential features could be 
the synthetic accessibility of the molecule (how easy it is to 
synthesize), commercial availability, or even its predicted 
activity against specific biological targets. Moreover, with 
the advancement of cheminformatics, new methods 
for molecular description have been developed. These 
include various 2D and 3D molecular descriptors, 
such as path-based fingerprints, extended-connectivity 
fingerprints, 2D pharmacophore fingerprints and extended 
3D fingerprints [24].
Data for pharmacological features are manually extracted 
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from published literature and are routinely updated. 
Moreover, regulatory agency documents are periodically 
checked for schedule of administration, indications 
and warnings of drugs. At present, some compound 
databases are available online and extensively used 

in DL (i.e., PubChem, ChEMBL), containing over 105 
million compound candidates [25,26]. Such databases 
have integrated advanced information regarding  drugs 
biological activity, most in the form of QSAR descriptors 
[27]. (Table 2)

In particular, the ChEMBL database maintained by the 
European Bioinformatics Institute (EBI) of the European 
Molecular Biology Laboratory (EMBL), contains 1.6 
million distinct compounds, 14 million bioactivities, 
11 thousand biological targets, and other related data. 
Furthermore, it is equipped with toolkits for data 
mining [28], including tailored resources for specific 
tasks, as for example Kinase SARfari (chemogenomics 
workbench focused on kinases) or ADME SARfari (tool 
for predicting and comparing cross-species ADME 
targets). Another notable database is the QM9, which is 
a widely used in the field of computational chemistry 
and includes quantum mechanical calculations for a 
diverse set of small organic molecules [29]. The QM9 
dataset provides important molecular properties such 
as atomization energies, equilibrium geometries, dipole 
moments, and other complex molecular parameters. It 

has been used for the development and validation of 
ML models for molecular property prediction and drug 
discovery.
While these databases may comprise millions of 
different molecules, they are far from covering the entire 
chemical space. As a matter of fact, both empirical and 
simulated molecules may exist in available databases. 
In this context, empirical molecules refer to those that 
have been experimentally observed and characterized 
in the laboratory, which data is derived from actual 
experimental results, and their properties and 
behaviours are known based on empirical evidence. 
On the other hand, simulated molecules are those that 
have been predicted or generated using computer 
simulations, such as molecular dynamics simulations 
using mathematical models and algorithms to predict 
the properties and effects of molecules according to their 

TABLE 2 - Molecular descriptors available in chemical libraries based on their dimensionality [27].

NON-DIMENSIONAL
• Molecular weight
• Atom number
• Atom-type count

• Steric properties
• Molecular geometry
• Surface area and volume
• Binding site properties

1D DESCRIPTORS • Functional groups
• Substituent atoms

• Molecular topology
• Connectivity bonds2D DESCRIPTORS

3D DESCRIPTORS

Descriptor 
Dimensions

Properties
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atomic composition and structure. Predicted molecules 
are often collected in designated databases known as 
virtual libraries. Such libraries may be divided in static 
and dynamic [30]. Static libraries aim at enumerating all 
possible virtual molecules that may exist in a specific field. 
As an example, GDB-17 report about 116 billion virtual 
organic molecules [31]. Other libraries, such as ZINC, has 
far less compounds (around 22 million) but are free, focused 
on ready-made molecules and provide three- dimensional 
conformations, therefore are widely used in ligand- and 
structure-based virtual screening studies [32]. Aiming at 
completeness and performing a screening afterward as 
in static libraries may be good strategies to systematically 
screen chemical space; however, it must be considered 
that libraries by definition may not be completed, and the 
largest the library, the most difficult it becomes to perform 
a screening. For this reason, dynamic libraries have been 
developed, which may be seen as an algorithm capable of 
investigating only the chemical space around molecules 
of user interest, thus enabling fastest and more efficient 
screening. A common example is PINGUI, a free tool 
which identifies reactive site of a molecule and recombines 
resulting fragments as building blocks to complement the 
core fragment and generating a tailored chemical space 
defined by the scientist [33]. Both types of libraries have pros 
and cons and should be used combinedly. Future challenges 
will involve how to store and screen such a large amount of 
data and how to make them available to a larger audience for 
research purpose [30].

3.2 Virtual Screening of molecules

In the last decades, virtual screening (VS) has emerged as 
a more efficient way to physical screening; it consists of a 
computational screening of large libraries of molecules which 
compared biochemical properties, such as structure similarity, 
and gave a rank of most promising drugs [34,35]. Overall, VS 
strategies may be divided in two groups:
1.	 ligand-based methods: starting from an already existing 

input molecule, these methods try to find similar 
molecules in an extensive chemical library basing 
on atoms types and reciprocal connection and three-
dimensional configuration. 

2.	 structure-based methods: in this case, the search in 
chemical libraries aims at finding pharmacological 
agents that may fit a known binding site. Since these 
latter methods do not require an input compound, 

they are more useful than ligand-based ones in case of 
biological target with no binders available yet. For the 
same reason, as a drawback, structure-based virtual 
screening may be less accurate [35].

Ligand-based methods have revolutionized the field 
of drug discovery by delivering new drug candidates 
more quickly and at a lower cost. These methods allow 
for rapid VS of molecules, utilizing pharmacophoric 
techniques and alignment methods based on ligand 
shape and electrostatic similarity. Such techniques have 
proven their efficiency in identifying novel potentially 
active compounds [36,37]. On the other hand, structure-
based techniques have unveiled a plethora of potential 
drug targets. These techniques facilitate enhanced 
meticulous target identification and validation, thereby 
reducing efficacy-related drug attrition. Furthermore, 
once the crystal structure of a target is obtained 
through structural biology techniques such as X-ray 
crystallography, Nuclear Magnetic Resonance (NMR), 
neutron crystallography (NC), cryo-Electron Microscopy 
(cryo-EM), and mass spectrometry (MS) among others, 
researchers can swiftly establish the structure-activity 
relationship of the compound. This accelerates the 
process and reduces the number and time of compound 
synthesis [38,39].
Overall, VS allows for a fast screening of large chemical 
libraries going beyond empirical screening capabilities 
and pragmatically providing lists of likely candidates 
for further studies. However, some challenges must still 
be faced. First, spatial conformation of molecules is not 
fixed: molecular flexibility in aqueous environment and 
dynamic structure of receptors make it far more complex 
to establish ligand-receptor absolute binding energies and 
energetically accessible conformations of receptors; this 
process may require relevant resources in terms of time 
and CPU power [34,35]. Second, although efficient, VS may 
still make mistakes by incorrectly missing a true efficacy 
of an agent or, more importantly, by anticipating activity 
of an inactive drug. In drug development, even a minimal 
false positive rate of VS may lead to a large number of 
compounds tested, with both an increase of expenses for 
testing and an obscuration of the signal of truly active 
molecules [35,40].
DL methods play a vital role in evaluating physicochemical 
properties, target affinity, and pharmacokinetic (PK) 
profiles of potential drug candidates, becoming a valuable 
tool to speed up the drug discovery process. In particular, 
DTI prediction has been of great help for drug repositioning 
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and virtual drug screening. Binding affinity prediction 
has been explored using DL methods. One of the biggest 
challenges when manipulating the complex molecular data 
consist in the identification of the most optimal encoding 
method. Molecules are often encoded according to the 
Simplified Molecular Input Line Entry System (SMILES), 
which represent and efficient way of storing information 
from the molecular graph using string characters [41]. 
SMILES allows for the linearization of the molecular graph 
by enumerating the nodes and edges on the bases of a 
certain path. However, it is affected by the randomness 
attributed to the selection of the starting atom in the 2D 
graph, meaning that multiple SMILES may exist for one 
molecule. For example, the canonical SMILE notations 
for water and ethanol are O and CCO, respectively. 
[42,43] SMILES are usually taken in consideration as they 
may be standardized through canonization algorithm. 
This latter is a procedure that generates a unique and 
unambiguous representation of a molecule, usually by 
assigning a priority to each atom based on its connectivity, 
atomic number, chirality, and other properties, and then 
generating a SMILES string that follows the priority order. 
While there are different canonization algorithms, they all 
aim to ensure that the same molecule always has the same 
canonical SMILES string. Another method is represented 
by labelling and “one hot encoding”, a process by which 
categorical variables are converted into a new categorical 
feature with binary values assigned (1 if present or 0 if 
absent), allowing to represent each integer value as a 
binary vector [44].
Several DL methods have shown to outperform 
conventional ML approaches, due to their generally 
better capability of handling high-dimensional data 
that is particularly useful in domains with large datasets 
including hundreds of features. DL methods are also 
largely superior at pattern recognition, which proves 
to be extremely helpful when discerning patterns and 
discriminative features in molecules with complex 
structure and topology. In some cases, DL models are 
enhanced by using algorithms that have been widely 
validated in conventional ML, as is the case of Cheng 
Chen and co-workers, who have applied XGBoost algorithm 
together with multi-layered DNNs to build a drug-target 
interactions predictor, achieving an accuracy above 98% and 
outclassing other state-of- the-art prediction systems [45]. A 
real-life example is high-performance DL models is brought 
by the Affinity2Vec, a drug-target binding affinity prediction 
model based on representation learning [46].

Another network-based approach is DeepDTA [47], which 
uses a heterogeneous graph attention (HGAT) model 
coupled with bidirectional ConvLSTM to learn topological 
information of compound molecules and modelling 
spatial-sequential information based on the molecular 
SMILES sequences. This is yet a further examples of 
superior deep networks performances, due to the ability 
to learn hierarchical representations. This means that 
they can learn multiple levels of abstraction from data, 
where lower layers hold information about general 
molecular shape and topology, while deeper layers 
may gain insight on more complex physicochemical 
properties. Beside the model layout, other approaches 
may be undertaken to improve the capability of DL; such is 
the case of two models, namely MathDL and TopologyNet, 
which make use of algebraic topology to identify 
interactions between protein and ligand. In particular, 
MathDL [48] exploited advanced mathematical techniques 
such as graph theory to encode the physicochemical 
interactions into lower-dimensional rotational and 
translational invariant representations. TopologyNet [49] is 
created as an ensemble of multi-channel topological CNNs 
to represent the protein-ligand complex geometry through 
1D topological invariants for affinity prediction and protein 
mutation. Finally, some DL applications have been focused 
on specific segments of the drugs chemical space, such is 
the case of KinomeX. The latter is an online platform to 
predict polypharmacology effects of kinases solely based 
on their chemical structures. A multi-task DNN model 
trained with over 140 000 bioactivity data points for 391 
kinases carries out predictions for the users, enabling them 
to create a comprehensive kinases interaction network for 
designing novel chemical modulators [50].

3.3 De Novo Drug Design

It has been estimated that the total number of organic 
compound that may potentially be synthesized ranges 
from 1030 to 1060 [35]. Searching for a potentially useful 
drug amidst this vast compound space is akin to looking 
for a needle in a haystack for pharmaceutical industries, 
as it accounts for a large amount of money and time. For 
this reason, rational de novo design approach has always 
been used. De novo drug design essentially involves the 
creation of new chemical structures with specific desired 
properties, such as a particular biological response.
Traditionally, computational methods proceeded one 
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molecular fragment at a time to highlight worse or better 
biochemical properties of the new drug. This process may 
obviously benefit from automated methods for constructing 
these novel structures. This is the reason why ML may 
be extremely helpful in this field as well and Generative 
Models (GMs) have been proposed. A generative model 
is a ML algorithm which may retrieve data of existing 
chemical compounds to identify patterns and chemistry 
rules which may be employed to generate new molecules 
[51]. Technically, GMs are made of three parts linked by a 
neural network: first, an encoding module converts a set 
of molecules into a continuous vectorized representation; 
then a decoding module reconstructs the continuous vector 
representation back into a molecule; lastly, a predictive 
module computes one or multiple properties for vectors 
derived from the continuous representation [35]. Gomez-
Bombarelli and colleagues were among the first to propose 
this new method based on encoding of compounds and 
showing good prediction power [52].
The choice of molecular representation to be presented to the 
encoder significantly influences the learning process of the 
model, determining how molecular information is acquired. 
There are three primary types of representations: 3D (e.g., 
coordinate-based), two-dimensional (e.g., molecular graphs) 
and one-dimensional. The commonly used 1D representation 
is SMILES notation, which is particularly suitable for neural 
network architectures designed for language processing [7]. 
For example, a generative neural network trained on SMILES 
was recently developed to de novo design a ligand for nuclear 
receptor related 1 (Nurr1), a transcription factor involved in 
neurodegenerative disease pathways; these strategies led 
to the synthesis of two candidates with desired activity, one 
of which with a notable potency, even if this network was 
trained with a relatively limited number of molecules due to 
the lack of active drugs in this setting [53].
However, ML models often struggle to fully comprehend 
the intricacies of SMILES grammar, resulting in the 
generation of invalid SMILES that cannot be translated 
into meaningful molecular structures; therefore, other 
strategies have been proposed [54]. Similarly, considering 
molecular 3D structure may represent an issue, as different 
forcefields and interactions are involved in determining 
spatial conformation. To address this challenge, recent 
efforts have focused on training 3D generative models 
using extensive sets of conformers. For example, the 
geometric ensemble of molecules (GEOM) comprises over 
37 million molecular conformations for about half million 
molecules [55].

3.4 Chemical synthesis of drugs

Not only must new drugs be designed, but they have 
also to be effectively synthesized; only a relatively small 
number of chemical reactions have been shown to be 
used in recent years and few have been introduced 
compared to 40 years ago. On the one hand, these 
commonly used reactions are reliable and have led to 
a wide range of commercially available building 
blocks that can be effectively exploited. On the other, 
despite the growth in synthesized drugs, the limited 
variety of reactions used has led to certain regions 
of the chemical space being densely populated with 
structurally similar molecules, while other regions 
remain unexplored [56].
Recent developments include the use of AI to process 
large databases of organic reactions and propose 
new synthetic pathways. This process consists of two 
activities: research and reaction prediction. The research 
involves identifying a series of chemical reactions to form 
a retrosynthetic pathway between a target compound 
and starting materials. Afterwards, reaction prediction 
determines the feasibility of those reactions basing on 
the context [51,57].
Two approaches may be used to investigate steps of 
organic synthesis: template-based and template-free 
methods. Template-based methods use hand-coded 
reaction templates to describe determined steps of 
bond formation among atoms: they have been widely 
used for decades, but can be computationally expensive 
and limited by the quality of the templates [58]. More 
recently, template-free methods have been introduced: 
they use neural networks to learn the relationship 
between reactants and products. In particular, neural 
networks consider chemical blocks as a sequence of 
characters, such as in the SMILES strings. After a proper 
training on a large database of chemical compounds, 
the neural network tries to generate reactants given 
the proposed products, thus suggesting new chemical 
reactions [59]. Additionally, neural networks may be 
trained by associating a large number of molecules 
to known originating reactions in order to predict the 
probability of a further reaction to produce the desired 
product [60]. However, assessing the feasibility of 
unprecedented reactions can be difficult, as the same 
reaction in different conditions (i.e. time, temperature 
and catalysts) may lead to different yields; therefore, it 
may still takes resources to be validated [51].
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4. Drug repurposing

Drug repurposing is the process of identifying new 
therapeutic applications for existing drugs. This strategy is 
achievable as drugs may have several targets, which may 
induce different effects according to contexts and diseases. 
Drug repositioning has various advantages over traditional 
drug development, including shorter development times 
and lower costs, given that the safety and pharmacokinetic 
profile of the drugs have already been established [61].
However, finding novel uses for currently available 
medications is a difficult endeavour as it necessitates a 
thorough comprehension of the drug’s mechanism of 
action as well as the underlying molecular pathways of the 
condition of interest. AI has emerged as a viable technique 
for drug repurposing, as it can scan vast volumes of data 
on pharmacological characteristics and disease pathways 
in order to find new therapeutic targets and indications. As 
an example, drug repositioning strategies were proposed 
in the first phases of Coronavirus disease (COVID-19) 
pandemics. In this setting, challenges in drug repurposing 
included limitations of preclinical assays, suboptimal CT 
designs, lack of appropriate clinical endpoints, and the 
absence of reproducible preclinical animal models. ML was 
thought to provide in the shortest time pharmacological 
agents to treat the disease while bypassing traditional 
development steps required for new drugs [62]. Similarly, 
an integrative deep network that combined multiple 
relationships and leveraged a vast amount of information 
embedded as vectors from the PubMed and DrugBank 
databases was proposed [63]. 41 drugs, including 
dexamethasone and indomethacin, were predicted to have 
repurposing potential as therapeutic agents against for 
treating SARS-CoV-2.
Furthermore, several AI-based drug repurposing methods 
have been developed, including ML algorithms, network-
based approaches, and natural language processing 
methods. These strategies typically involve the integration 
of multiple data sources and the use of advanced statistical 
and computational techniques to identify potential drug-
disease associations. One of the main benefits of AI-based 
drug repurposing is the ability to integrate multiple 
data sources with Real-World data, such as electronic 
health records and CT data, to identify new drug-disease 
associations that might not be immediately obvious using 
traditional approaches and statistical methods which are 
limited in handling a substantial amount of data. Liu and 
colleagues proposed a framework for screening of on-

market drug candidates by retrospectively analysing Real-
World data [64]. In particular, they emulated randomised 
CTs to systematically evaluate drug efficacy on a panel of 
diseases; moreover, DL techniques were used to control for 
confounders in real-world data through a propensity score 
estimation model. Additionally, they provide an example 
which demonstrates the effectiveness of the proposed 
computational drug repurposing framework in identifying 
potential drug candidates with beneficial effects on disease 
outcomes for coronary artery disease patients, even 
outreaching the performances of other existing pre-clinical 
drug repurposing methods. This new approach may be 
exploited whenever real RCTs are not available despite a 
large volume of observational data.
However, further progresses are required. Data and 
model harmonization are essential for the development of 
broadly applicable and interoperable computational tools 
for drug repositioning. Similarly, data security and privacy 
concerns must be addressed through careful consideration 
of the data lifecycle and the implementation of regulations 
and transparency [62].

5. Clinical Trials

CTs are the gold standard to prove efficacy of a drug and 
are required by regulatory agencies for releasing marketing 
authorisation. Although CTs require a large amount of 
time and resources to be performed, a positive result is not 
guaranteed even in case of a true effect of the drug; in fact, 
many pitfalls are described in terms of patients’ enrolment, 
study design, trial conduction and phase transitions, 
which may lead to trial unsuccess. Recently, ML has been 
discussed as a way to overcome these problems and 
offering several opportunities for improving the efficiency 
of different trial process steps [65,66].
First, patients’ enrolment is one of the major challenges 
in CT conduction. This is due to both complex protocol 
designs, which makes it difficult to include subjects and 
fully adhere to the conduction, and lack of interest of the 
patients. It has been shown that only 15% of CTs manage to 
entirely avoid patients dropout, while average dropout rates 
are about 30% [66]. Notably, a poor recruitment with a high 
number of dropouts may lead to trial discontinuation due 
to the inability to demonstrate the outcome. In this setting, 
ML algorithms can identify potential CT participants by 
analysing electronic health records, large datasets, and 
patient files. By more effectively identifying the right 
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participants, they can help streamline the recruitment 
process and speed up trial enrolment, thus leading to faster 
and more reliable results [67]. Additionally, this may reduce 
early stopping of CTs due to insufficient patient enrolment 
or high rates of dropout. It has been suggested that AI may 
predict likelihood of dropouts from CT: this information may 
be used to focus effort on these patients to provide additional 
education to encourage longer participation [68,69].
Second, CT design may be optimized as well under 
different points of view. It has been shown that AI may 
simulate different scenarios according to trial design, 
sample size, randomization strategy, and statistical 
analysis plan and evaluate their likely outcomes [66]. 
Moreover, AI may even permit the substitution of control 
group with an artificial one in future: given a large 
amount and variety of data from each enrolled patient, 
AI might predict individual natural history and disease 
progression; in particular, this study design emulates the 
impact of placebo on virtual patients and compares it to the 
intervention group of RCT; by employing synthetic control 
arms, this approach ensures that all enrolled participants 
receive the experimental intervention, thereby addressing 
concerns related to treatment assignment and the potential 
for unblinding [69,70]. However, these strategies need to 
be fully validated in order to ensure an efficacy comparable 
with traditional trials.
Third, trial conduction may be improved as well. ML may 
provide real-time monitoring of patient data to ensure 
safety and efficacy parameters are met. Continuous data 
analysis might identify patterns, outliers, adverse events 
and treatment responses in a timely manner, thus enabling 
prompt intervention and improved patient safety. Non-
stop monitoring may be further permitted by wearable 
devices which monitor patient’s parameters 24 hours a 
day, thus reducing number of missing data points [71]. 
Even traditional tests performed during CTs may be 
affected: ML techniques can automate the evaluation of 
trial endpoints, such as analysis of radiographic images 
or pathology slides, thus reducing manual workload, and 
enabling more efficient data analysis. For instance, Erdaw 
et al. developed a model to accurately make diagnosis of 
COVID-19 using digital chest X-ray image. Remarkably, 
the model achieves an accuracy of over 97% [72].
Therefore, by integrating patients’ characteristics, historical 
data, biomarkers and treatment outcomes, ML may help 
optimize treatment options by identifying patient subgroups 
that may respond differently to interventions; this may 
be relevant considering the increasing interest raised by 

personalised medicine in order to tailor pharmacological 
treatment to each patients’ characteristics [73].
Lastly, ML can be employed to assess the likelihood of 
success during CT phase transitions. This aspect holds 
great importance considering that only one out of every 
five drugs that enter phase 1 CTs ultimately receives 
marketing authorization [66]. Specific algorithms have 
shown an average accuracy of approximately 80% in 
predicting the outcome of these transitions. This capability 
can offer advantages to both trialists, who can utilize the 
information to refine protocol designs, and pharmaceutical 
industries, which can save resources and allocate budgets 
more effectively [74].

6. Conclusions

ML methodologies can have a deep impact on drug 
development; DL, especially through the use of generative 
models, has demonstrated significant advancements in 
drug design and investigating protein-ligand binding 
processes, leading to a renewed enthusiasm in the field.
Despite progress made in recent years, at the moment 
GMs are unlikely to automatically produce drug 
candidates with optimal properties due to the complexity 
of molecular interactions. In fact, these interactions hinge 
on the three-dimensional conformation of receptors, 
which, in turn, relies both on the structural composition of 
aminoacidic chain, and environmental factors, including 
pH, temperature and oxidation. These factors influence 
molecular flexibility, receptor affinity, and other features 
that algorithms may not consistently predict automatically 
in every instance.
For these reasons, the input of human expertise continues 
to be crucial. Therefore, further advancements in next years 
are required in terms of:
1.	 data curation and quality,
2.	 appropriate model validation and ways to handling 

uncertainty in predictions;
3.	 improving data accessibility, ensuring clearer 

interpretation, better readability, and the potential 
for reuse, with the aim of reducing resources waste, 
accelerating innovation and providing new drugs for 
unmet clinical needs.

Automation and combining multiple approaches - 
generative, predictive, synthesis planning - will surely 
be promising research directions. Another challenge 
is represented by performance evaluation: comparing 
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experimentally determined and predicted values for 
physical properties or biological activity may represent 
a benchmark for ML models evaluation; additionally, 
comparison among techniques should be performed as 
well, in order to minimise costs and maximise results.
The final phases of drug development have also benefited 
from these new techniques. Incorporating AI in CTs 
holds great promise, as it is predicted to advance medical 
research and make it more sustainable. Continuous efforts 
have been made to investigate the potential of AI in order 
to conduct more efficient and profitable trials. To fully 
validate these methods, however, much more research 
is needed. Additionally, as there is still a lack of specific 
ethical and regulatory guidance focused on AI’s use in CTs, 
adoption of digital transformation will likely be cautious 
and slow. Sponsors, investigators, and regulators may 

successfully tackle all of these issues by working together 
closely and using a patient-centered, ethical strategy.
In conclusion, a considerable amount of effort is still 
needed to fully integrate AI algorithms into standard drug 
discovery processes. However, this emerging technology 
holds the potential to substantially enhance drug 
development, even in areas where unmet medical needs 
persist. In this context, there is a reasonable expectation 
that ML may become a reliable tool to effectively address 
the challenges that both basic and clinical researchers 
currently have encountered for years.
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